LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convolutional Neural Network (CNN) Based Three Dimensional Tumor Localization Using Single X-Ray Projection

Photo from wikipedia

Accurate localization of lung tumor in real time based on a single X-ray projection is of great interest to the tumor-tracking radiotherapy but is very challenging. In this paper, a… Click to show full abstract

Accurate localization of lung tumor in real time based on a single X-ray projection is of great interest to the tumor-tracking radiotherapy but is very challenging. In this paper, a convolutional neural network (CNN)-based tumor localization method was proposed to address this problem with the aid of principal component analysis-based motion modeling. A CNN regression model was trained before treatment to recover the ill-conditioned nonlinear mapping from the single X-ray projection to the tumor motion. Novel intensity correction and data augmentation techniques were adopted to improve the model’s robustness to the scatter and noise in the X-ray projection image. During treatment, the volumetric image and tumor position could be obtained by applying the CNN model on the acquired X-ray projection. This method was validated and compared with the other state-of-the-art methods on three real patient data. It was found that the proposed method could achieve real-time tumor localization with much higher accuracy (<1 mm) and robustness.

Keywords: single ray; ray projection; tumor; localization

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.