LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Ensemble Model Based on Adaptive Noise Reducer and Over-Fitting Prevention LSTM for Multivariate Time Series Forecasting

Photo from wikipedia

Multivariate time series forecasting recently has received extensive attention with its wide application in finance, transportation, environment, and so on. However, few of the currently developed models have considered the… Click to show full abstract

Multivariate time series forecasting recently has received extensive attention with its wide application in finance, transportation, environment, and so on. However, few of the currently developed models have considered the impact of noise on prediction. Since multivariate time series contains multiple subsequences with strong nonlinear fluctuations, it is also difficult to obtain satisfactory prediction results. In this paper, aiming at improving prediction performance, we have proposed a novel ensemble three-phase model called adaptive noise reducer-stacked auto-encoder-validating-AdaBoost-based long short-term memory (ANR-SAE-VALSTM). We start with an introduction of a novel ANR for time series noise elimination. The SAEs are then used to extract features from the de-noised multivariate time series. Finally, we feed the de-noised features into the VALSTM to train an ensemble over-fitting prevention predictor. The proposed model is employed on the Beijing PM2.5 dataset and GEFCom2014 Electricity Price dataset. Compared with other popular models, the proposed model has achieved the best prediction performance in all prediction horizons. In addition, a careful ablation study is conducted to demonstrate the efficiency of our model design.

Keywords: time; time series; model; multivariate time; noise

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.