LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated Categorization of Multi-Class Brain Abnormalities Using Decomposition Techniques With MRI Images: A Comparative Study

Photo from wikipedia

Medical imaging and analysis are useful to visualize anatomic structure. However, analysis of the pathologic substrate is difficult and inefficient when using simple imaging tools. The manual detection and classification… Click to show full abstract

Medical imaging and analysis are useful to visualize anatomic structure. However, analysis of the pathologic substrate is difficult and inefficient when using simple imaging tools. The manual detection and classification of brain abnormality is particularly tedious. Moreover, the currently used methodology suffers from interobserver variability during image interpretation. Magnetic resonance imaging (MRI) is an efficient imaging technique for revealing complex anatomical architecture, and it is highly efficacious for precise brain imaging. Herein, we describe a novel computer aided diagnosis method for automated processing of brain MRI images. The performances of two decomposition techniques, namely, bidimensional empirical mode decomposition and variational mode decomposition (VMD), are compared. Thereafter, bispectral feature extraction and supervised neighborhood projection embedding are implemented to represent each feature in a new subspace, for the automated classification of various categories of disease. A support vector machine classifier is used to train and test the performance accuracy. The level of classification accuracy of 90.68%, 99.43% sensitivity and 87.95% specificity is obtained using the VMD technique. Hence, the developed system can be used as an adjunct tool by radiologists to confirm their screening.

Keywords: decomposition; automated categorization; mri images; decomposition techniques; categorization multi; brain

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.