LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning-Based Classification Methods for Remote Sensing Images in Urban Built-Up Areas

Photo from wikipedia

Urban areas have been focused recently on the remote sensing applications since their function closely relates to the distribution of built-up areas, where reflectivity or scattering characteristics are the same… Click to show full abstract

Urban areas have been focused recently on the remote sensing applications since their function closely relates to the distribution of built-up areas, where reflectivity or scattering characteristics are the same or similar. Traditional pixel-based methods cannot discriminate the types of urban built-up areas very well. This paper investigates a deep learning-based classification method for remote sensing images, particularly for high spatial resolution remote sensing (HSRRS) images with various changes and multi-scene classes. Specifically, to help develop the corresponding classification methods in urban built-up areas, we consider four deep neural networks (DNNs): 1) convolutional neural network (CNN); 2) capsule networks (CapsNet); 3) same model with a different training rounding based on CNN (SMDTR-CNN); and 4) same model with different training rounding based on CapsNet (SMDTR-CapsNet). The performances of the proposed methods are evaluated in terms of overall accuracy, kappa coefficient, precision, and confusion matrix. The results revealed that SMDTR-CNN obtained the best overall accuracy (95.0%) and kappa coefficient (0.944) while also improving the precision of parking lot and resident samples by 1% and 4%, respectively.

Keywords: remote sensing; learning based; built areas; urban built; classification; deep learning

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.