LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Medical Image Encryption Scheme Based on Chaos and DNA Encoding

Photo from wikipedia

In this paper, we propose a new chaos-based encryption scheme for medical images. It is based on a combination of chaos and DNA computing under the scenario of two encryption… Click to show full abstract

In this paper, we propose a new chaos-based encryption scheme for medical images. It is based on a combination of chaos and DNA computing under the scenario of two encryption rounds, preceded by a key generation layer, and follows the permutation-substitution-diffusion structure. The SHA-256 hash function alongside the initial secret keys is employed to produce the secret keys of the chaotic systems. Each round of the proposed algorithm involves six steps, i.e., block-based permutation, pixel-based substitution, DNA encoding, bit-level substitution (i.e., DNA complementing), DNA decoding, and bit-level diffusion. A thorough search of the relevant literature yielded only this time the pixel-based substitution and the bit-level substitution are used in cascade for image encryption. The key-streams in the bit-level substitution are based on the logistic-Chebyshev map, while the sine-Chebyshev map allows producing the key-streams in the bit-level diffusion. The final encrypted image is obtained by repeating once the previous steps using new secret keys. Security analyses and computer simulations both confirm that the proposed scheme is robust enough against all kinds of attacks. Its low complexity indicates its high potential for real-time and secure image applications.

Keywords: dna; chaos; image; encryption; substitution; bit level

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.