LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder

Photo by framesforyourheart from unsplash

Deep learning techniques have been gaining prominence in the research world in the past years; however, the deep learning algorithms have high computational cost, making them hard to be used… Click to show full abstract

Deep learning techniques have been gaining prominence in the research world in the past years; however, the deep learning algorithms have high computational cost, making them hard to be used to several commercial applications. On the other hand, new alternatives have been studied and some methodologies focusing on accelerating complex algorithms including those based on reconfigurable hardware has been showing significant results. Therefore, the objective of this paper is to propose a neural network hardware implementation to be used in deep learning applications. The implementation was developed on a field-programmable gate array (FPGA) and supports deep neural network (DNN) trained with the stacked sparse autoencoder (SSAE) technique. In order to allow DNNs with several inputs and layers on the FPGA, the systolic array technique was used in the entire architecture. Details regarding the designed implementation were evidenced, as well as the hardware area occupation and the processing time for two different implementations. The results showed that both implementations achieved high throughput enabling deep learning techniques to be applied for problems with large data amounts.

Keywords: implementation; neural network; network hardware; deep learning

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.