LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Optimizing and Differentially Private Clustering Algorithm for Mixed Data in SDN-Based Smart Grid

Photo from wikipedia

Software-defined network (SDN) is widely used in smart grid for monitoring and managing the communication network. Big data analytics for SDN-based smart grid has got increasing attention. It is a… Click to show full abstract

Software-defined network (SDN) is widely used in smart grid for monitoring and managing the communication network. Big data analytics for SDN-based smart grid has got increasing attention. It is a promising approach to use machine learning technologies to analyze a large amount of data generated in SDN-based smart grid. However, the disclosure of personal privacy information must receive considerable attention. For instance, data clustering in user electricity behavior analysis may lead to the disclosure of personal privacy information. In this paper, an optimizing and differentially private clustering algorithm named ODPCA is proposed. In the ODPCA, the differentially private K-means algorithm and K-modes algorithm are combined to cluster mixed data in a privacy-preserving manner. The allocation of privacy budgets is optimized to improve the accuracy of clustering results. Specifically, the loss function that considers both the numerical and categorical attributes between true centroids and noisy centroids is analyzed to optimize the allocation the privacy budget; the number of iterations of clustering is set to a fixed value based on the total privacy budget and the minimal privacy budget allocated to each iteration. It is proved that the ODPCA can meet the differential privacy requirements and has better performance by comparing with other popular algorithms.

Keywords: based smart; smart grid; differentially private; privacy; sdn based

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.