LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian mmWave Channel Estimation via Exploiting Joint Sparse and Low-Rank Structures

Photo by lureofadventure from unsplash

We consider the problem of channel estimation for millimeter wave (mmWave) systems, where both the base station and the mobile station employ a single radio frequency (RF) chain to reduce… Click to show full abstract

We consider the problem of channel estimation for millimeter wave (mmWave) systems, where both the base station and the mobile station employ a single radio frequency (RF) chain to reduce the hardware cost and power consumption. Recent real-world channel measurements reveal that the mmWave channels incur a certain amount of spread over the angular domains due to the scattering clusters. The angular spreads give rise to a joint sparse and low-rank channel matrix in the angular domain. To utilize this joint sparse and low-rank structure, we address the channel estimation problem within a Bayesian framework. Specifically, we adopt a matrix factorization formulation and translate the problem of channel estimation into one of searching for two-factor matrices. To encourage a joint sparse and low-rank solution, independent sparsity-promoting priors are placed on entries of the two-factor matrices, which aims to promote sparse factor matrices with only a few non-zero columns. Based on the proposed prior model, we develop a variational Bayesian inference method for the mmWave channel estimation. The simulation results show that our proposed method presents a considerable performance improvement over the state-of-the-art compressed sensing-based channel estimation methods.

Keywords: joint sparse; low rank; channel estimation; estimation; sparse low

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.