LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Internal-Loop Compensator Based Sliding Mode Control of Nonlinear Systems in the Presence of Mismatched Disturbances

Photo by apchf from unsplash

This paper introduces the robust internal-loop compensator based sliding mode control (SMRIC) scheme for multiple-input multiple-output (MIMO) nonlinear systems subjected to mismatched uncertainties, which are time-varying and non-vanishing with non-constant… Click to show full abstract

This paper introduces the robust internal-loop compensator based sliding mode control (SMRIC) scheme for multiple-input multiple-output (MIMO) nonlinear systems subjected to mismatched uncertainties, which are time-varying and non-vanishing with non-constant steady-state values. The proposed approach extends an application area of the robust internal-loop compensator (RIC), as well as a class of mismatched uncertainties that could be imposed on the system. The developed SMRIC technique allows substantial alleviation of the chattering phenomenon in the presence of disturbances while retaining the nominal performance of the system in the absence of disturbances. The stability analysis of the closed-loop system is performed using the Lyapunov-based approach. The proposed SMRIC method guarantees the finite-time convergence of the system trajectories to the sliding surface and provides asymptotic stability of the equilibrium. The simulation results of the numerical example and both simulation and experimental results of the application example show that the proposed SMRIC technique exhibits, in comparison with the concurrent algorithms, excellent tracking performance and robustness properties in the presence of modeling uncertainties, parameter variations, external disturbances, and mismatched uncertainties.

Keywords: presence; internal loop; loop compensator; loop; robust internal

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.