LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variability of Cardiac Electromechanical Delay With Application to the Noninvasive Detection of Coronary Artery Disease

Photo by cdc from unsplash

Heart rate variability (HRV), systolic period variability (SPV), and diastolic period variability (DPV) have shown potential for assessing cardiac function. It is unknown whether the time delay between the myocardial… Click to show full abstract

Heart rate variability (HRV), systolic period variability (SPV), and diastolic period variability (DPV) have shown potential for assessing cardiac function. It is unknown whether the time delay between the myocardial electrical and mechanical activities (i.e., electromechanical delay, EMD) also possesses variability, and if it does, whether this EMD variability (EMDV) could render additional value for cardiac function assessment. In this paper, we extracted the beat-to-beat EMD from 5-min simultaneously recorded electrocardiogram and phonocardiogram signals in 30 patients with coronary artery disease (CAD) and 30 healthy control subjects, and studied its variability using the same methods as applied for HRV including time-domain measures [mean and standard deviation (SD)], frequency-domain measures [normalized low- and high-frequency (LFn, HFn) and LF/HF)], and nonlinear measures [sample entropy (SampEn), permutation entropy (PE), and dynamical patterns]. In addition, we examined whether the addition of EMDV could offer improved performance for distinguishing between the two groups compared to using the HRV, SPV, and DPV features. Support vector machine with 10-fold cross-validation was used for classification. Results showed increased SD of SPV, increased mean, SD and decreased SampEn of EMDV in CAD patients. Besides, the dynamical pattern analysis showed that CAD patients had significantly increased fluctuated patterns and decreased monotonous patterns in EMDV. In particular, the addition of EMDV indices dramatically increased the classification accuracy from 0.729 based on HRV, SPV, and DPV features to 0.958. Our results suggest promising of the EMDV analysis that could potentially be helpful for detecting CAD noninvasively.

Keywords: artery disease; coronary artery; emdv; variability; delay; electromechanical delay

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.