Estimation of the noise power spectral density (PSD) plays a critical role in most existing single-channel speech enhancement algorithms. In this paper, we present a novel noise PSD tracking algorithm,… Click to show full abstract
Estimation of the noise power spectral density (PSD) plays a critical role in most existing single-channel speech enhancement algorithms. In this paper, we present a novel noise PSD tracking algorithm, which employs a log-spectral power minimum mean square error (MMSE) estimator. This method updates the noise PSD estimate by performing a temporal recursive averaging of log-spectral MMSE estimate of the current noise power to reduce the risk of speech leakage into noise estimate. A smoothing parameter used in the recursive operation is adjusted by speech presence probability (SPP). In this method, a spectral nonlinear weighting function is derived to estimate the noise spectral power which depends on the a priori and the a posteriori signal-to-noise ratio (SNR). An extensive performance comparison has been carried out with several state-of-the-art noise tracking algorithms, i.e., Minimum Statistics (MS), modified minima controlled recursive averaging algorithm (MCRA-2), MMSE-based method, and SPP-based method. It is clear from experimental results that the proposed algorithm exhibits more excellent noise tracking capability under various nonstationary noise environments and SNR levels. When employed in a speech enhancement framework, improved speech enhancement performance in terms of the segmental SNR (segSNR) improvements and three objective composite metrics is observed.
               
Click one of the above tabs to view related content.