LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CSI Feedback Based on Deep Learning for Massive MIMO Systems

Photo from wikipedia

Aiming at the problem of high complexity and low feedback accuracy of existing channel state information (CSI) feedback algorithms for frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, this paper… Click to show full abstract

Aiming at the problem of high complexity and low feedback accuracy of existing channel state information (CSI) feedback algorithms for frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, this paper proposes a CSI compression feedback algorithm based on deep learning (DL), which is suitable for single-user and multi-user scenarios in massive MIMO systems. This algorithm considers the spatial correlation of massive MIMO channel and uses bidirectional long short-term memory (Bi-LSTM) and bidirectional convolutional long short-term memory (Bi-ConvLSTM) network to decompress and recover the CSI for single-user and multi-user, respectively. The proposed DL-based CSI feedback network is trained offline by massive MIMO channel data and could learn the structural characteristics of the massive MIMO channel by fully exploiting the channel information in the training samples. The simulation results show that compared with several classical CSI compression feedback algorithms, the proposed CSI compression feedback algorithm has lower computational complexity, higher feedback accuracy, and better system performance in massive MIMO systems.

Keywords: mimo; csi feedback; massive mimo; mimo systems

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.