LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Energy Efficient Cooperative Communication Scheme in Ambient RF Powered Sensor Networks

Photo by mbrunacr from unsplash

The ambient radio frequency (RF) energy harvesting technology has recently been regarded as a potential solution for powering the wireless sensor networks (WSNs). However, the ultra-low power density of ambient… Click to show full abstract

The ambient radio frequency (RF) energy harvesting technology has recently been regarded as a potential solution for powering the wireless sensor networks (WSNs). However, the ultra-low power density of ambient RF energy is the main impediment to its further application. In this paper, we propose a novel energy efficient cooperative communication scheme (EECCS), which combines energy beamforming communication and ambient backscatter communication, to overcome the energy problem of WSNs powered by ambient RF energy harvesting. Moreover, to further reduce the energy consumption of nodes, we present an optimal resource allocation problem for EECCS. It can be formulated as a signomial geometric programming (SGP), which is nonconvex and NP-hard. We develop a Sequential Convex Approximation (SCA) algorithm for finding a solution of this SGP problem, which transforms the SGP problem into a sequence of geometric programming (GP) problems that are convex. The simulation results indicate that the EECCS can improve the energy efficiency of the ambient RF powered WSNs and maximize the total amount of data received by the sink.

Keywords: ambient; communication; energy efficient; energy; efficient cooperative; sensor networks

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.