LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Container Terminal Oriented Logistics Generalized Computational Complexity

Photo by theian20 from unsplash

The planning and scheduling of container terminal logistics systems (CTLS) are the multi-objective and multiple strong constraints combinatorial optimization challenges under the uncertain environments, and those are provided with high… Click to show full abstract

The planning and scheduling of container terminal logistics systems (CTLS) are the multi-objective and multiple strong constraints combinatorial optimization challenges under the uncertain environments, and those are provided with high goal orientation, dynamics, context-sensitivity, coupling, timeliness, and complexity. The increasingly sophisticated decision-making for CTLS is one of the most pressing problems for the programming and optimization method available. This paper discusses CTLS in terms of logistics generalized computation complexity based on computational thinking, great principles of computing, and computational lens, which three are abbreviated with 3CTGPL, and makes a definition of container terminal oriented logistics generalized computational complexity (CTO-LGCC) and container terminal logistics generalized computation comprehensive performance perspective (CTL-GCCPP) from the dimensions of time, space, communication, processor, and memory access. Both can analyze, generalize, migrate, translate, localize, modificate, and evaluate the above-complicated problems and lay solid foundations and establish a feedback improvement framework for the computational model and scheduling algorithms of the CTLS, which is an essential complement to the modeling and optimization methodology and solutions to CTLS with computational logistics. Finally, aimed at the logistics service cases for a large-scale container terminal, the simulation is designed and implemented for different scheduling algorithms, and the qualitative and quantitative comprehensive analysis is executed for the concomitant CTO-LGCC that demonstrates and verifies the feasibility and credibility of the CTO-LGCC and CTL-GCCPP from the viewpoint of the practice of container terminal decision-making support on the tactical level.

Keywords: terminal oriented; logistics generalized; oriented logistics; complexity; container terminal

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.