LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interpretable Emotion Recognition Using EEG Signals

Photo by kaimantha from unsplash

Electroencephalogram (EEG) signal-based emotion recognition has attracted wide interests in recent years and has been broadly adopted in medical, affective computing, and other relevant fields. However, the majority of the… Click to show full abstract

Electroencephalogram (EEG) signal-based emotion recognition has attracted wide interests in recent years and has been broadly adopted in medical, affective computing, and other relevant fields. However, the majority of the research reported in this field tends to focus on the accuracy of classification whilst neglecting the interpretability of emotion progression. In this paper, we propose a new interpretable emotion recognition approach with the activation mechanism by using machine learning and EEG signals. This paper innovatively proposes the emotional activation curve to demonstrate the activation process of emotions. The algorithm first extracts features from EEG signals and classifies emotions using machine learning techniques, in which different parts of a trial are used to train the proposed model and assess its impact on emotion recognition results. Second, novel activation curves of emotions are constructed based on the classification results, and two emotion coefficients, i.e., the correlation coefficients and entropy coefficients. The activation curve can not only classify emotions but also reveals to a certain extent the emotional activation mechanism. Finally, a weight coefficient is obtained from the two coefficients to improve the accuracy of emotion recognition. To validate the proposed method, experiments have been carried out on the DEAP and SEED dataset. The results support the point that emotions are progressively activated throughout the experiment, and the weighting coefficients based on the correlation coefficient and the entropy coefficient can effectively improve the EEG-based emotion recognition accuracy.

Keywords: activation; interpretable emotion; eeg signals; emotion; emotion recognition

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.