LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using Sequential Decision Making to Improve Lung Cancer Screening Performance

Photo from wikipedia

Globally, lung cancer is responsible for nearly one in five cancer deaths. The National Lung Screening Trial (NLST) demonstrated the efficacy of low-dose computed tomography (LDCT) to identify early-stage disease,… Click to show full abstract

Globally, lung cancer is responsible for nearly one in five cancer deaths. The National Lung Screening Trial (NLST) demonstrated the efficacy of low-dose computed tomography (LDCT) to identify early-stage disease, setting the basis for widespread implementation of lung cancer screening programs. However, the specificity of LDCT lung cancer screening is suboptimal, with a significant false positive rate. Representing this imaging-based screening process as a sequential decision making problem, we combined multiple machine learning-based methods to learn a partially-observable Markov decision process that simultaneously optimizes lung cancer detection while enhancing test specificity. Using NLST data, we trained a dynamic Bayesian network as an observational model and used inverse reinforcement learning to discover a rewards function based on experts’ decisions. Our resultant predictive model decreased the false positive rate while maintaining a high true positive rate at a level comparable to human experts. Our model also detected a number of lung cancers earlier.

Keywords: sequential decision; lung; cancer screening; lung cancer; cancer

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.