LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Low-Cost System for Seismocardiography-Based Cardiac Triggering: A Practical Solution for Cardiovascular Magnetic Resonance Imaging at 3 Tesla

Photo from wikipedia

This study describes a pilot clinical validation of a new low-cost system for the continuous monitoring of the human body’s cardiorespiratory activities within the magnetic resonance examination area. This study… Click to show full abstract

This study describes a pilot clinical validation of a new low-cost system for the continuous monitoring of the human body’s cardiorespiratory activities within the magnetic resonance examination area. This study primarily focuses on monitoring cardiac activity and the related cardiac triggering. The patented system tested by the authors is based on seismocardiography (SCG). The study was conducted on 18 subjects on a Siemens Prisma 3T MR scanner. Standard anatomical and diffusion sequences were used to test cardiac activity monitoring. A wide range of commonly used diagnostic sequences were used to test imaging of the heart by means of cardiac triggering. System functionality was verified against a commercially available electrocardiography (ECG) system. Monitoring of cardiac activity (detection of the R-R interval in ECG and the AO-AO interval in SCG) was objectively evaluated by determining the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV, i.e. F1. Imaging quality control using Cardiac Triggering was performed by subjective evaluation of images by the physicians. The study conducted clearly confirmed the functionality of the system in terms of continuous cardiac activity monitoring. In all 18 subjects, a mean PPV > 99% was achieved; F1 > 99%; SE > 99%; ACC > 98%; $1.96\sigma $ < 3.5 bpm. Also, Cardiac Triggering functionality was confirmed by the physicians on the basis of analyzing cardiac images using the T1/T2 balanced echo sequences and the T1 flash sequence measured natively.

Keywords: system; cardiac activity; cardiac triggering; low cost; magnetic resonance; cost system

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.