LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Generalized One-Bit Control System Using a $\Delta\Sigma$ -Quantizer

Photo by charlesdeluvio from unsplash

This paper presents the use of a delta-sigma quantizer for generalized one-bit control processing. An equivalent control strategy based on sliding-mode control is employed to derive the necessary condition for… Click to show full abstract

This paper presents the use of a delta-sigma quantizer for generalized one-bit control processing. An equivalent control strategy based on sliding-mode control is employed to derive the necessary condition for the convergence of the proposed one-bit control system in both the continuous-time and discrete-time domains. Under the convergence condition, the binary signals generated by delta-sigma quantizers in the one-bit control system effectively replace their counterpart signals in conventional control systems. This enables a significant reduction in the number of multipliers and overall hardware cost for computing the control laws in one-bit control systems. Our result is applied to design a multiplier-less one-bit generalized proportional and integral controller for the position control of an experimental prototype of a DC motor. An implementation of the one-bit control system is carried out using an FPGA platform to demonstrate the behavior of one-bit generalized proportional and integral controller and compare the results with the standard in terms of implementation efficiency. The results of the simulation and experiment show that the one-bit generalized proportional and integral controller effectively controls the system and achieves the desired specifications. At the same time, the proposed one-bit control system consumes significantly fewer hardware resources than the standard control syst.

Keywords: control system; bit control; control; one bit

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.