LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Coupling Approach With GSO-BFOA for Many-Objective Optimization

Photo by austindistel from unsplash

Glowworm swarm optimization (GSO) and bacterial foraging optimization algorithm (BFOA) are two popular swarm intelligence optimization algorithms (SIOAs). However, both GSO and BFOA show some difficulties when solving many-objective optimization… Click to show full abstract

Glowworm swarm optimization (GSO) and bacterial foraging optimization algorithm (BFOA) are two popular swarm intelligence optimization algorithms (SIOAs). However, both GSO and BFOA show some difficulties when solving many-objective optimization problems (MaOPs). To challenge MaOPs, a coupling approach based on GSO and BFOA is proposed in this paper. To implement the coupling method, an external archive is established to save the best solutions found so far. The internal populations in GSO and BFOA can exchange the search information with the external archive in the evolutionary process. Simulation experiments are verified on two benchmark sets (DTLZ and WFG) with 3 to 15 objectives. The performance of our approach is compared with five other famous algorithms including NSGA-III, KnEA, MOEA/D-DE, GrEA and HypE. Results prove the effectiveness of our approach.

Keywords: optimization; gso bfoa; objective optimization; coupling approach; many objective

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.