LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cooperative Spectrum Sharing on SWIPT-Based DF Relay: An Energy-Aware Retransmission Approach

Photo from wikipedia

In this paper, cooperative cognitive radio networks are considered, in which a primary user (PU) and an off-the-grid secondary user (SU) co-exist by exploiting simultaneous wireless information and power transfer.… Click to show full abstract

In this paper, cooperative cognitive radio networks are considered, in which a primary user (PU) and an off-the-grid secondary user (SU) co-exist by exploiting simultaneous wireless information and power transfer. Based on a two-phase relaying model, adaptive power splitting is performed at the SU for information decoding while collecting the energy remaining in the first phase. The energy harvested is then used to forward the decoded primary signal, with the secondary signal superimposed in the second phase. To enhance the utilization of both the spectrum and energy, an energy-aware retransmission approach is proposed for enabling successful decoding at the SU while collecting a reasonable amount of energy for relaying. The outage probability and throughput are theoretically analyzed for both the PU and the SU. To provide more analytical insights, tight performance upper and lower bounds are obtained in closed forms. Our results demonstrate that a mutually beneficial relationship can be built between the PU and the SU under proper parameter configurations. Furthermore, a performance tradeoff with respect to the number of retransmissions is demonstrated, where additional performance gains can be achieved by the proposed retransmission approach under unfavorable conditions of high rate, low power, and weak channels.

Keywords: energy aware; retransmission approach; energy; aware retransmission

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.