LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Linear-to-Circular Polarization Converter Using the Graphene Transmissive Metasurface

Photo from wikipedia

In this article, a tunable linear-to-circular polarization converter (LTCPC) in terahertz (THz) regime using the graphene transmissive metasurface is proposed, which is composed of two resonant layers containing the metal… Click to show full abstract

In this article, a tunable linear-to-circular polarization converter (LTCPC) in terahertz (THz) regime using the graphene transmissive metasurface is proposed, which is composed of two resonant layers containing the metal and graphene resonators separated by a dielectric spacer. The linearly-polarized wave with normal incidence can be transformed to the circularly-polarized wave. The operating band can be dynamically regulated in THz band by electrically controlling the Fermi energy ( $E_{\mathrm {f}}$ ) of the graphene sheets rather than reforming the structures. The optimized result of axial ratio (AR) band which is less than 3 dB is located at 2.64-3.29 THz (the relative bandwidth is 21.92%) in the case of $E_{\mathrm {f}}=0.1$ eV. The physical characteristics of graphene are explored and the relevant operational results of the presented LTCPC are elucidated in this article. Compared with the conventional LTCPC, our design provides a more effective implementation method for wide applications, and it offers a further step in graphene controllable devices.

Keywords: circular polarization; polarization converter; using graphene; graphene transmissive; tunable linear; linear circular

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.