LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Implementation Issues of Flux Linkage Estimation on Permanent Magnet Machine Position Sensorless Drive at Low Speed

Photo from wikipedia

This paper improves the surface permanent magnet (PM) machine position sensorless drive at low speed. Considering the surface PM machine (SPM) drive, EMF voltage or flux linkage should be estimated… Click to show full abstract

This paper improves the surface permanent magnet (PM) machine position sensorless drive at low speed. Considering the surface PM machine (SPM) drive, EMF voltage or flux linkage should be estimated for the sensorless drive. Different from EMF voltage, the flux linkage based on the voltage integration is theoretically independent to speed which is suited for the low speed position estimation. In this paper, several improvements on the flux-based sensorless drive are proposed to enhance the low speed dynamic performance. First, a modified voltage integration is develop to remove the flux estimation drift caused by voltage or current offset. This integration contains a high-pass filter (HPF) for the DC drift elimination. In addtion, the filter delay is compensated to maintain the flux phase. Second, inverter deadtime harmonics are decoupled with the knowledge of actual machine phase voltages. It is shown that the position estimation error is decreased for the better low speed performance. According to experimental results, SPM machine sensorless drive is enhanced at 4%~6% speed region from many aspects. They include position signal SNR, position error and drive dynamic response. More importantly, the overall current regulation bandwidth can increase to 1kHz at low speed. It is compatible to standard encoder-based field oriented control (FOC) drives.

Keywords: speed; machine; position; sensorless drive; low speed

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.