LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reconfigurability Mechanisms With Scanning Rate Control for Omega-Bianisotropic Huygens’ Metasurface Leaky-Wave Antennas

Photo by bagasvg from unsplash

In this paper, different reconfigurability mechanisms are proposed to scan the pointing direction at a fixed frequency of recently-proposed leaky-wave antennas based on omega-bianisotropic Huygens’ metasurfaces. The tunability of both… Click to show full abstract

In this paper, different reconfigurability mechanisms are proposed to scan the pointing direction at a fixed frequency of recently-proposed leaky-wave antennas based on omega-bianisotropic Huygens’ metasurfaces. The tunability of both the waveguide height and the dielectric permittivity of the substrate filling the waveguide are studied, extracting theoretical expressions to predict the dependence of the beam pointing direction with the design parameters. It is shown that it is possible to control the scanning rate, a challenging task for conventional leaky-wave antennas, leading to different performances: high scanning, radiation pattern stability and backward-to-forward scanning. Additionally, the control of the scanning rate is exploited to reduce the beam squinting when varying the frequency. Simulation results of several designs with both impedance sheets and physical realization to implement the metasurfaces demonstrate the validity of the theoretical predictions and the reconfigurability potential of such a structure.

Keywords: scanning rate; omega bianisotropic; leaky wave; reconfigurability mechanisms; wave antennas

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.