LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Method to Detect Multiple Arrhythmias Based on Time-Frequency Analysis and Convolutional Neural Networks

Photo from wikipedia

Electrocardiogram (ECG) is an efficient and commonly used tool for detecting arrhythmias. With the development of dynamic ECG monitoring, an effective and simple algorithm is needed to deal with large… Click to show full abstract

Electrocardiogram (ECG) is an efficient and commonly used tool for detecting arrhythmias. With the development of dynamic ECG monitoring, an effective and simple algorithm is needed to deal with large quantities of ECG data. In this study, we proposed a method to detect multiple arrhythmias based on time-frequency analysis and convolutional neural networks. For a short-time (10 s) single-lead ECG signal, the time-frequency distribution matrix of the signal was first obtained using a time-frequency transform method, and then a convolutional neural network was used to discriminate the rhythm of the signal. ECG data in multiple databases were used and were divided into 12 classes. Finally, the performance of three kinds of time-frequency transform methods are evaluated, including short-time Fourier transform (STFT), continuous wavelet transform (CWT), and pseudo Wigner-Ville distribution (PWVD). The best result was obtained by STFT, with an accuracy of 96.65%, an average sensitivity of 96.47%, an average specificity of 99.68%, and an average F1 score of 96.27%, respectively. Especially, the area under curve (AUC) value is 0.9987. The proposed method in this work may be efficient and valuable to detect multiple arrhythmias for dynamic ECG monitoring.

Keywords: time frequency; time; detect multiple; multiple arrhythmias

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.