LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detecting Hypernymy Relations Between Medical Compound Entities Using a Hybrid-Attention Based Bi-GRU-CapsNet Model

Photo by vidarnm from unsplash

Named entities composed of multiple continuous words frequently occur in domain-specific knowledge graphs. In general, these named entities are composable and extensible, such as names of symptoms and diseases in… Click to show full abstract

Named entities composed of multiple continuous words frequently occur in domain-specific knowledge graphs. In general, these named entities are composable and extensible, such as names of symptoms and diseases in the medical domain. Unlike the general entities, we address them as compound entities, and try to identify hypernymy relations between them. Hypernymy detection between compound entities plays a critical role in domain-specific knowledge graph construction. Traditional hypernymy detection approaches do not perform well on compound entities for two reasons. One is the lack of contextual information, and the other is the absence of compound entities, i.e. out-of-vocabulary (OOV) problem. In this paper, we propose a hybrid-attention-based method called Bi-GRU-CapsNet for the detection of hypernymy relations. The hybrid attention mechanism consists of heuristic attention and self-adaptive attention, which are used for the lack of contextual information. The attentions focus on the differences of two compound entities on the lexical and semantic level, respectively. For OOV problem, the English words or Chinese characters in compound entities are fed into bidirectional gated recurrent units (Bi-GRUs). Additionally, we use capsule network (CapsNet) to determine the existence of hypernymy relations under different cases. Experimental results show that our proposed method outperforms other baseline methods on both English and Chinese corpora of symptom and disease pairs.

Keywords: compound entities; hybrid attention; capsnet; hypernymy relations; compound

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.