LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification

Photo from wikipedia

With the popularity of the internet, the expression of emotions and methods of communication are becoming increasingly abundant, and most of these emotions are transmitted in text form. Text sentiment… Click to show full abstract

With the popularity of the internet, the expression of emotions and methods of communication are becoming increasingly abundant, and most of these emotions are transmitted in text form. Text sentiment classification research mainly includes three methods based on sentiment dictionaries, machine learning and deep learning. In recent years, many deep learning-based works have used TextCNN (text convolution neural network) to extract text semantic information for text sentiment analysis. However, TextCNN only considers the length of the sentence when extracting semantic information. It ignores the semantic features between word vectors and only considers the maximum feature value of the feature image in the pooling layer without considering other information. Therefore, in this paper, we propose a convolutional neural network based on multiple convolutions and pooling for text sentiment classification (variable convolution and pooling convolution neural network, VCPCNN). There are three contributions in this paper. First, a multiconvolution and pooling neural network is proposed for the TextCNN network structure. Second, four convolution operations are introduced in the word embedding dimension or direction, which are helpful for mining the local features on the semantic dimensions of word vectors. Finally, average pooling is introduced in the pooling layer, which is beneficial for saving the important feature information of the extracted features. The verification test was carried out on four emotional datasets, including English emotional polarity, Chinese emotional polarity, Chinese subjective and objective emotion and Chinese multicategory. Our apporach is effective in that its result was up to 1.97% higher than that of the TextCNN network.

Keywords: sentiment classification; neural network; convolution; text sentiment; network

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.