LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Review of Pavement Defect Detection Methods

Photo from wikipedia

Road pavement cracks detection has been a hot research topic for quite a long time due to the practical importance of crack detection for road maintenance and traffic safety. Many… Click to show full abstract

Road pavement cracks detection has been a hot research topic for quite a long time due to the practical importance of crack detection for road maintenance and traffic safety. Many methods have been proposed to solve this problem. This paper reviews the three major types of methods used in road cracks detection: image processing, machine learning and 3D imaging based methods. Image processing algorithms mainly include threshold segmentation, edge detection and region growing methods, which are used to process images and identify crack features. Crack detection based traditional machine learning methods such as neural network and support vector machine still relies on hand-crafted features using image processing techniques. Deep learning methods have fundamentally changed the way of crack detection and greatly improved the detection performance. In this work, we review and compare the deep learning neural networks proposed in crack detection in three ways, classification based, object detection based and segmentation based. We also cover the performance evaluation metrics and the performance of these methods on commonly-used benchmark datasets. With the maturity of 3D technology, crack detection using 3D data is a new line of research and application. We compare the three types of 3D data representations and study the corresponding performance of the deep neural networks for 3D object detection. Traditional and deep learning based crack detection methods using 3D data are also reviewed in detail.

Keywords: performance; detection methods; image processing; crack detection; detection

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.