LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
$L_p$ -Norm-Based Sparse Regularization Model for License Plate Deblurring
Photo from wikipedia
We propose an $L_{p}$ -norm-based sparse regularization model for license plate deblurring, which is motivated by distinctive properties of license plate images. For the blurred images, general deblurring methods may… Click to show full abstract
We propose an $L_{p}$ -norm-based sparse regularization model for license plate deblurring, which is motivated by distinctive properties of license plate images. For the blurred images, general deblurring methods may restore a good overall visual effect. However, in real-life traffic surveillance system, the deblurring results may be not good for license plates. The main reason lies in that general deblurring methods do not give sufficient thought to the features of license plate, which could be important priors for deblurring. Focusing on this issue, analysis on the statistical distribution characteristics of the license plates are launched, based on which an $L_{p}$ -norm-based regularization model is proposed. Furthermore, alternating direction method of multipliers are introduced to solve the model. Experimental results demonstrate that the proposed model performs favorably against the state-of-the-art license plate image deblurring methods.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 1
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.