LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Few-Shot Learning Based Balanced Distribution Adaptation for Heterogeneous Defect Prediction

Photo by nadinmario from unsplash

Heterogeneous defect prediction (HDP) aims to predict the defect tendency of modules in one project using heterogeneous data collected from other projects. It sufficiently incorporates the two characteristics of the… Click to show full abstract

Heterogeneous defect prediction (HDP) aims to predict the defect tendency of modules in one project using heterogeneous data collected from other projects. It sufficiently incorporates the two characteristics of the defect prediction data: (1) datasets could have different metrics and distribution, and (2) data could be highly imbalanced. In this paper, we propose a few-shot learning based balanced distribution adaptation (FSLBDA) approach for heterogeneous defect prediction, which takes into consideration the two characteristics of the defect prediction data. Class imbalance of the defect datasets can be solved with undersampling, but the scale of the training datasets will be smaller. Specifically, we first remove redundant metrics of datasets with extreme gradient boosting. Then, we reduce the data difference between the source domain and the target domain with the balanced distribution adaptation. It considers the marginal distribution and the probability of conditional distribution differences and adaptively assigns different weights to them. Finally, we use adaptive boosting to relieve the influence caused by the size of the training dataset is smaller, which can improve the accuracy of the defect prediction model. We conduct experiments on 17 projects from 4 datasets using 3 indicators (i.e., AUC, G-mean, F-measure). Compared to three classic approaches, the experimental results show that FSLBDA can effectively improve the prediction performance.

Keywords: balanced distribution; distribution adaptation; prediction; defect prediction; heterogeneous defect

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.