LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Credal Transfer Learning With Multi-Estimation for Missing Data

Photo by campaign_creators from unsplash

Transfer learning (TL) has grown popular in recent years. It is effective to improve the classification accuracy in the target domain by using the training knowledge in the related domain… Click to show full abstract

Transfer learning (TL) has grown popular in recent years. It is effective to improve the classification accuracy in the target domain by using the training knowledge in the related domain (called source domain). However, the classification of missing data (or incomplete data) is a challenging task for TL because different strategies of imputation may have strong impacts on learning models. To address this problem, we propose credal transfer learning (CTL) with multi-estimation for missing data based on belief function theory by introducing uncertainty and imprecision in data imputation procedure. CTL mainly consists of three steps: Firstly, the query patterns are reasonably mapped into multiple versions in source domain to characterize the uncertainty caused by missing values. Afterwards, the multiple mapping patterns are classified in the source domain to obtain the corresponding outputs with different discounting factors. Finally, the discounted outputs, represented by the basic belief assignments (BBAs), are submitted to a new belief-based fusion system to get the final classification result for the query patterns. Three comparative experiments are given to illustrate the interests and potentials of CTL method.

Keywords: multi estimation; missing data; transfer learning; estimation missing; credal transfer

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.