In this paper, a backup protection scheme is presented. The proposed scheme uses the concept of a cognitive radio-based wireless sensor network to implement a protection scheme without the need… Click to show full abstract
In this paper, a backup protection scheme is presented. The proposed scheme uses the concept of a cognitive radio-based wireless sensor network to implement a protection scheme without the need for conventional electric wires and/or optical fiber between current and voltage transducers, control panels, and circuit breakers. The proposed scheme uses unlicensed spectrum channels by applying spectrum sensing and frequency allocation algorithms that are used in cognitive radio based systems. The importance of the proposed scheme comes from its cost effectiveness compared to the Ethernet communication both wired and wireless if the data transfer and message exchange is done using cognitive radio_based communication for relatively long distances. The proposed scheme utilizes cognitive radio-based communication network to convey analog and digital signals within a substation. In this way, it saves the cost of the copper wires and/or optical fiber that would be used to transmit digital and analog signals. Further, it does not require the expensive spectrum licenses that would have been purchased if Ethernet long-distance wireless communications are utilized. To assess the benefits/challenges related to the application of cognitive radio_based communication, a detailed and realistic modeling of both power systems and cognitive radio_based communication systems is performed simultaneously. The proposed scheme is simulated using MATLAB/Simulink and performance of the proposed scheme was investigated under different communication scenarios.
               
Click one of the above tabs to view related content.