This paper develops an integral reinforcement learning (IRL) controller for a class of high-order multivariable nonlinear systems with unknown control coefficients (UCCs). A new long-term performance index is first presented,… Click to show full abstract
This paper develops an integral reinforcement learning (IRL) controller for a class of high-order multivariable nonlinear systems with unknown control coefficients (UCCs). A new long-term performance index is first presented, and then the critic neural network (NN) and the action NN are presented to estimate the unobtainable long-term performance index and the unknown drift of systems, respectively. By combining the critic and action NNs with Nussbaum-type functions, the IRL controllers for high-order, nonsquare multivariable systems are proposed to cope with the problem of UCCs. The analysis are given to illustrate that the stability of the closed-loop system can be obtained, and the signals of the closed-loop systems are semiglobally uniformly ultimately bounded (UUB). Finally, one simulation example is provided to show the effectiveness of the proposed IRL controllers.
               
Click one of the above tabs to view related content.