LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fault Detection Based on the Generalized S-Transform With a Variable Factor for Resonant Grounding Distribution Networks

Photo from wikipedia

Fault detection in resonant grounding (RG) distribution networks remains a challenge due to weak fault signals, extremely complex fault conditions, and unstable intermittent arc grounding faults. This paper addresses this… Click to show full abstract

Fault detection in resonant grounding (RG) distribution networks remains a challenge due to weak fault signals, extremely complex fault conditions, and unstable intermittent arc grounding faults. This paper addresses this issue by applying generalized S-transform (GST) with a variable factor to conduct denoising of transient zero-sequence currents based on threshold filtering followed by time-frequency distribution filtering in sequence. Meanwhile, this paper proposes a comprehensive multi-criteria faulty feeder detection method based on the transient zero-sequence current polarity (criterion 1), the energy relative entropy (criterion 2), and the total transient current energy (criterion 3). Here, criteria 2 and 3 are based on the time-frequency representation of the GST. The performances of the proposed denoising and faulty feeder detection methods are evaluated under single line to ground faults based on simulations conducted using a modeled 10 kV RG networks with overhead and cable mixed lines in addition to reasonably sophisticated permanent and intermittent arc discharge models to ensure that the simulations faithfully represent actual complex working conditions. Compared with existing method, simulation experiments and field test show that the method proposed in this paper provide a better denoising effect with stronger self-adaptability, higher detection accuracy, and a faster calculation speed.

Keywords: grounding distribution; distribution networks; resonant grounding; distribution; fault detection; detection

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.