LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Midpoint Current Characteristics for Novel Six-Phase N+2 Power Converter in Different Working Condition

Photo by des0519 from unsplash

In this paper, a novel N+2 power converter is introduced and be applied to a six-phase switched reluctance motor (SRM) drive system. Compared with six-phase asymmetric half bridge (AHB) converter,… Click to show full abstract

In this paper, a novel N+2 power converter is introduced and be applied to a six-phase switched reluctance motor (SRM) drive system. Compared with six-phase asymmetric half bridge (AHB) converter, the number of power devices required by this N+2 converter is greatly reduced, while the independence and controllability of each phase can be ensured. However, in N+2 converters, the two midpoint switches are also important components and working at much higher switching frequency than phase switches. The value of the midpoint current directly affects the heating problem of these midpoint switches then affects the reliability of the N+2 converter. Hence, different operate modes of multi-phase excitation state of N+2 converter are enumerated to obtain the relation between the midpoint current and phase currents. Then the characteristics of the midpoint current under different control parameters were obtained through MATLAB-Simulink, and the parameter optimization rules for reducing the amplitude of midpoint current are summarized. In addition, the characteristics of midpoint current in several typical fault states are also summarized. Finally, the simulation results are verified by experiments.

Keywords: midpoint current; converter; six phase; power; phase

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.