LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial Modeling of Interference in Inter-Vehicular Communications for 3-D Volumetric Wireless Networks

Photo by cokdewisnu from unsplash

Unmanned aerial vehicle (UAV) assisted cell-free communications hold promise for enhancing the coverage and capacity of heterogeneous cellular networks. However, the network interference in such scenarios must be accurately modeled… Click to show full abstract

Unmanned aerial vehicle (UAV) assisted cell-free communications hold promise for enhancing the coverage and capacity of heterogeneous cellular networks. However, the network interference in such scenarios must be accurately modeled for efficient system design. The spatial characteristics of the desired and interfering signals can be jointly modeled by considering the characteristics of the signal-to-interference ratio (SIR). This work proposes a generalized framework for modeling the spatial statistics of the SIR encountered in 3-D volumetric inter-vehicular communication channels. Though the novel paradigm of UAV-assisted cell-free vehicular communications is analyzed in particular, the proposed framework is more general in that it incorporates 3-D mobility at both link ends. Also, this framework is shown to include as its special cases, several notable 2-D propagation models of network interference including those for terrestrial vehicle-to-vehicle and fixed-to-vehicle scenarios. Analytical expressions are derived for the SIR level-crossing-rate (LCR), average-fade-duration (AFD), spatial auto-covariance (SAC), and coherence distance (CD). Both single- and multi-cluster scattering environments are analyzed and the impact of channel parameters such as the direction and velocity of mobile nodes as well as the altitudes of the UAV and scattering cluster(s) on the SIR fading statistics is investigated. Finally, some future extensions of this work are also discussed such as the integration of intelligent reflective surfaces in the propagation scenario to generate favorable channel conditions.

Keywords: vehicle; spatial modeling; vehicular communications; interference; inter vehicular

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.