LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Density Peaks Clustering Algorithm Based on the Layered K-Nearest Neighbors and Subcluster Merging

Photo by bangkoes from unsplash

Density peaks clustering (DPC) algorithm is a novel density-based clustering algorithm, which is simple and efficient, is not necessary to specify the number of clusters in advance, and can find… Click to show full abstract

Density peaks clustering (DPC) algorithm is a novel density-based clustering algorithm, which is simple and efficient, is not necessary to specify the number of clusters in advance, and can find any nonspherical class clusters. However, DPC relies heavily on the calculation methods of the cutoff distance threshold and local density and cannot analyze complex manifold data, especially datasets with uneven density distribution and multiple peaks in the same cluster. To solve these problems, we propose an improved density peaks clustering algorithm based on the layered k-nearest neighbors and subcluster merging (LKSM_DPC). First, we redefine the local density calculation method using the layered k-nearest neighbors. To adapt to datasets with different densities, the k-nearest neighbors are divided into multiple layers. Second, for the multiple peaks in the same cluster problem, we design a new mechanism to calculate the similarity of subclusters based on the idea of shared neighbors and Newton’s law of gravitation, and a subcluster merging strategy is proposed. To prove the effectiveness of our algorithm, we compare the LKSM_DPC with K-means, DBSCAN, DPC, and DPC derivatives for 24 datasets. A large number of experiments demonstrate that our algorithm can often outperform other algorithms.

Keywords: density peaks; clustering algorithm; density; nearest neighbors; peaks clustering

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.