LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 3D Non-Stationary GBSM for Vehicular Visible Light Communication MISO Channels

Photo by ale_s_bianchi from unsplash

The potential of using visible light communication (VLC) technologies for vehicular communication networks has recently attracted much attention. The underlying VLC channels, as a foundation for the proper design and… Click to show full abstract

The potential of using visible light communication (VLC) technologies for vehicular communication networks has recently attracted much attention. The underlying VLC channels, as a foundation for the proper design and optimization of vehicular VLC communication systems, have not yet been sufficiently investigated. Vehicular VLC link impairments can have a significant impact on the system performance and capacity. Such impairments include the optical wireless channel distortion and background noise. This paper proposes a novel three-dimensional (3D) regular-shaped geometry-based stochastic model (RS-GBSM) for vehicular VLC multiple-input single-output (MISO) channels. The proposed 3D RS-GBSM combines a two-sphere model and an elliptic-cylinder model. Both the line-of-sight (LoS) and single-bounced (SB) components are considered. The proposed model jointly considers the azimuth and elevation angles by using von-Mises-Fisher (VMF) distribution. Based on the proposed model, the relationship between the communication range and the received optical power is analyzed and validated by simulations. The impact of the elevation angle in the 3D model on the received optical power is investigated by comparing with the received optical power of the corresponding two-dimensional (2D) model. Furthermore, the background noise is also modeled to evaluate the system’s signal-to-noise ratio (SNR).

Keywords: gbsm vehicular; light communication; communication; visible light; miso channels; model

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.