LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

Photo from wikipedia

The Fifth Generation (5G) wireless networks set its standard to provide very high data rates, Ultra-Reliable Low Latency Communications (URLLC), and significantly improved Quality of Service (QoS). 5G networks and… Click to show full abstract

The Fifth Generation (5G) wireless networks set its standard to provide very high data rates, Ultra-Reliable Low Latency Communications (URLLC), and significantly improved Quality of Service (QoS). 5G networks and beyond will power up billions of connected devices as it expands wireless services to edge computing and the Internet of Things (IoT). The Internet protocol suite continues its evolution from IPv4 addresses to IPv6 addresses by increasing the adoption rate and prioritizing IPv6. Hence, Internet Service Providers (ISP’s) are using the address transition method called dual-stack to prioritize the IPv6 while supporting the existing IPv4. But this causes more connectivity overhead in dual-stack as compared to the single-stack network due to its preference schema towards the IPv6. The dual-stack network increases the Domain Name System (DNS) resolution and Transmission Control Protocol (TCP) connection time that results in higher page loading time, thereby significantly impacting the user experience. Hence, we propose a novel connectivity mechanism, called NexGen Connectivity Optimizer (NexGenCO), which redesigns the DNS resolution and TCP connection phases to reduce the user-perceived latency in the dual-stack network for mobile devices. Our solution utilizes the IP network diversity to improve connectivity through concurrency and intelligent caching. NexGenCO is successfully implemented in Samsung flagship devices with Android Pie and further evaluated using both simulated and live-air networks. It significantly reduces connectivity overhead and improves page loading time up to 18%.

Keywords: latency; network; connectivity; dual stack; user perceived

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.