LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ARC-Net: An Efficient Network for Building Extraction From High-Resolution Aerial Images

Photo from wikipedia

Automatic building extraction based on high-resolution aerial images has important applications in urban planning and environmental management. In recent years advances and performance improvements have been achieved in building extraction… Click to show full abstract

Automatic building extraction based on high-resolution aerial images has important applications in urban planning and environmental management. In recent years advances and performance improvements have been achieved in building extraction through the use of deep learning methods. However, the design of existing models focuses attention to improve accuracy through an overflowing number of parameters and complex structure design, resulting in large computational costs during the learning phase and low inference speed. To address these issues, we propose a new, efficient end-to-end model, called ARC-Net. The model includes residual blocks with asymmetric convolution (RBAC) to reduce the computational cost and to shrink the model size. In addition, dilated convolutions and multi-scale pyramid pooling modules are utilized to enlarge the receptive field and to enhance accuracy. We verify the performance and efficiency of the proposed ARC-Net on the INRIA Aerial Image Labeling dataset and WHU building dataset. Compared to available deep learning models, the proposed ARC-Net demonstrates better segmentation performance with less computational costs. This indicates that the proposed ARC-Net is both effective and efficient in automatic building extraction from high-resolution aerial images.

Keywords: arc net; resolution aerial; high resolution; building extraction; aerial images

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.