In multipath assisted positioning, multipath components (MPCs) are regarded as line-of-sight (LoS) signals from virtual transmitters. Instead of trying to mitigate the influence of MPCs, the spatial information contained in… Click to show full abstract
In multipath assisted positioning, multipath components (MPCs) are regarded as line-of-sight (LoS) signals from virtual transmitters. Instead of trying to mitigate the influence of MPCs, the spatial information contained in MPCs is exploited for localization. The locations of the physical and virtual transmitters are in general unknown but can be estimated with simultaneous localization and mapping (SLAM). Recently, a multipath assisted positioning algorithm named Channel-SLAM for terrestrial radio signals has been introduced. It simultaneously tracks the position of a receiver and maps the locations of physical and virtual radio transmitters. Maps of estimated transmitter locations can be augmented by additional information. Within this paper, we propose to extend the Channel-SLAM algorithm by mapping information about the visibility of transmitters. A physical or virtual transmitter is visible, if its signal is received in a LoS condition. We derive a novel particle filter for Channel-SLAM that estimates and exploits visibility information on transmitters in addition to their locations. We show by means of simulations in an indoor scenario that our novel particle filter improves the positioning performance of Channel-SLAM considerably.
               
Click one of the above tabs to view related content.