LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Coordinated Control for Regenerative Braking System and Anti-Lock Braking System for Electrified Vehicles Under Emergency Braking Conditions

Photo from wikipedia

The economy of electrified vehicles can be improved by using the motor to recover the energy released during braking. However, the vehicle’s regenerative braking system (RBS) and anti-lock braking system… Click to show full abstract

The economy of electrified vehicles can be improved by using the motor to recover the energy released during braking. However, the vehicle’s regenerative braking system (RBS) and anti-lock braking system (ABS) are not compatible, so the energy dissipated during braking cannot be recovered under emergency braking conditions. This paper employs the method of logic threshold control combined with phase plane theory to analyze the relationship between the slip rate and the braking torque during the ABS braking process and to obtain the composition rule of the braking torque required for ABS braking. Based on this rule, a control strategy to coordinate RBS and ABS when triggering ABS is proposed to improve the efficiency of braking energy recovery. Furthermore, a comparative simulation is conducted to analyze the braking performance of electrified vehicle on roads with different adhesion coefficients by adopting the proposed control strategy and the traditional control strategy. The results show that, compared with the traditional coordinated control strategy, the braking energy recovery efficiency of the proposed coordinated control strategy is improved by 23.08%-38.54%, and can effectively shorten the braking distance and braking time, with better braking performance. Therefore, this paper offers a useful theoretical reference to the design of RBS and ABS coordinated control strategies for electrified vehicles.

Keywords: coordinated control; control; electrified vehicles; braking system; control strategy

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.