LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Band and High Gain Antenna Using AMC Ground Characterized With Four Zero-Phases of Reflection Coefficient

Photo from wikipedia

In this paper, a multi-band AMC-backed antenna system characterized with high gain and low-profile is proposed. It is constructed by placing a quad-band coplanar-waveguide (CPW) antenna over an AMC with… Click to show full abstract

In this paper, a multi-band AMC-backed antenna system characterized with high gain and low-profile is proposed. It is constructed by placing a quad-band coplanar-waveguide (CPW) antenna over an AMC with four zero-phases in the reflection coefficient. The CPW antenna consists of an ornamental-pillar-shaped patch with the specially designed parasitic elements, and a defected ground structure (DGS), for the application in the frequency bands of 2.45, 3.5, 4.6 and 5.8 GHz. To improve the CPW antenna’s radiation performance, an artificial magnetic conductor (AMC) ground with four zero-phases of the reflection coefficient is designed and employed as the reflector. The AMC unit cell is composed of four metallic nested rings (FMNR), whose innermost ring is connected in series to four lumped capacitors. It is observed that the proposed quad-band AMC ground can not only increase the gains of the multi-band antenna greatly but also combine the two intermediate frequency bands of the antenna into a broadband one. The prototypes of the antenna and the AMC array with $5\times {5}$ unit cells were fabricated and measured. It is found that in comparison to the antenna without AMC, the AMC-backed antenna obtains a gain enhancement by amounts of 4.93, 5.92, 5.54 and 4.95 dB at the frequencies of 2.45, 3.5, 4.6 and 5.8 GHz. The 10-dB impedance bandwidths of the AMC-backed antenna include three bands of 2.13–2.87, 3.22–4.75, and 5.54–5.86 GHz, with the corresponding relative bandwidths of 14.8%, 38.4%, and 5.3%. The proposed antenna can be potentially applied to the applications in WLAN, WiMAX, and 5G mobile communication systems.

Keywords: ground; phases reflection; antenna; multi band; zero phases; four zero

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.