LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decentralized Control of Multi-Robot System in Cooperative Object Transportation Using Deep Reinforcement Learning

Photo from wikipedia

Object transportation could be a challenging problem for a single robot due to the oversize and/or overweight issues. A multi-robot system can take the advantage of increased driving power and… Click to show full abstract

Object transportation could be a challenging problem for a single robot due to the oversize and/or overweight issues. A multi-robot system can take the advantage of increased driving power and more flexible configuration to solve such a problem. However, an increased number of individuals also changed the dynamics of the system which makes control of a multi-robot system more complicated. Even worse, if the whole system is sitting on a centralized decision making unit, the data flow could be easily overloaded due to the upscaling of the system. In this research, we propose a decentralized control scheme on a multi-robot system with each individual equipped with a deep Q-network (DQN) controller to perform an oversized object transportation task. DQN is a deep reinforcement learning algorithm, thus does not require the knowledge of system dynamics, instead, it enables the robots to learn appropriate control strategies through trial-and-error style interactions within the task environment. Since analogous controllers are distributed on the individuals, the computational bottleneck is avoided systematically. We demonstrate such a system in a scenario of carrying an oversized rod through a doorway by a two-robot team. The presented multi-robot system learns abstract features of the task and cooperative behaviors are observed. The decentralized DQN-style controller is showing strong robustness against uncertainties. In addition, We propose a universal metric to assess the cooperation quantitatively.

Keywords: robot system; system; multi robot; control; object transportation; robot

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.