LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Delayless Block Individual-Weighting-Factors Sign Subband Adaptive Filters With an Improved Band-Dependent Variable Step-Size

Photo from wikipedia

Delayless individual-weighting-factors sign subband adaptive filter (IWF-SSAF) algorithms with a band-dependent variable step-size (BDVSS) were recently introduced to achieve a robust convergence performance against the impulsive interference and to avoid… Click to show full abstract

Delayless individual-weighting-factors sign subband adaptive filter (IWF-SSAF) algorithms with a band-dependent variable step-size (BDVSS) were recently introduced to achieve a robust convergence performance against the impulsive interference and to avoid an undesirable signal path delay in subband systems. In this paper, we develop a block implementation of the delayless IWF-SSAF algorithm designed for an active impulsive noise control (AINC) system. With the block-processing approach, the proposed delayless block IWF-SSAF algorithm can be implemented more efficiently than the original delayless algorithm regardless of number of subbands, which is verified through the computational analysis. Furthermore, an improved BDVSS version (I-BDVSS) is also proposed by using the multiple auxiliary past gradients, which are given for each band by the block-processing. Finally, the simulation results illustrate that the proposed delayless block IWF-SSAF algorithm with the I-BDVSS, even requiring less computational burden, can achieve a better convergence performance than the original delayless algorithm with the BDVSS under severe impulsive noise control environment.

Keywords: individual weighting; block; factors sign; delayless; weighting factors; delayless block

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.