LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised Learning Clustering and Dynamic Transmission Scheduling for Efficient Dense LoRaWAN Networks

Photo from wikipedia

Long-Range (LoRa) communication technology is considered as a promising connectivity solutions for Internet of Things (IoT) dense applications. In particular, LoRa has drawn the interest due to its low power… Click to show full abstract

Long-Range (LoRa) communication technology is considered as a promising connectivity solutions for Internet of Things (IoT) dense applications. In particular, LoRa has drawn the interest due to its low power consumption and wide area coverage. Despite the benefits of LoRaWAN protocol, it still suffers from excessive random and simultaneous transmissions due to the adoption of ALOHA protocol. Therefore, resulting in severe packet collision rate as the network scales up. This leads to continuous retransmission attempts, which in return increase the transmission delay and energy consumption. Thus, this paper proposes a dynamic transmission Priority Scheduling Technique (PST) based on the unsupervised learning clustering algorithm to reduce the packet collision rate and enhance the network’s transmission delay and energy consumption. Particularly, the LoRa gateway classifies the nodes into different transmission priority clusters. While the dynamic PST allows the gateway to configure the transmission intervals for the nodes according to the transmission priorities of the corresponding clusters. This work allows scaling up the network density while maintaining low packet collision rate and significantly enhances the transmission delay & the energy consumption. Simulation results show that the proposed work outperforms the typical LoRaWAN and recent clustering & scheduling schemes. Therefore, the proposed work is well suited for dense applications in LoRaWAN.

Keywords: learning clustering; dense; dynamic transmission; consumption; unsupervised learning; transmission

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.