LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Ice Hockey Players and Teams via a Two-Phase Cascaded CNN Model

Photo from wikipedia

The accurate detection of ice hockey players and teams during a game is crucial to the tracking of individual players on the rink and team tactical decision making and is… Click to show full abstract

The accurate detection of ice hockey players and teams during a game is crucial to the tracking of individual players on the rink and team tactical decision making and is therefore becoming an important task for coaches and other analysts. However, hockey is a fluid sport due to its complex situation and the frequent substitutions by both teams, resulting in the players taking various postures during a game. Few player detection models from basketball and soccer take these characteristics into account, especially for team detection without prior annotations. Here, a two-phase cascaded convolutional neural network (CNN) model is designed for the detection of individual ice hockey players, and the jersey color of the detected players is extracted to further identify team affiliations. Our model filters most of the disturbing information, such as the audience and sideline advertising bars, in Phase I and refines the detection of the targeted players in Phase II, resulting in an accurate detection with a precision of 98.75% and a recall of 94.11% for individual players and an average accuracy of 93.05% for team classification with a self-built dataset of collected images from the 2018 Winter Olympics. The results for the regular season games of the 2019-2020 National Hockey League (NHL) covering all 31 teams are also presented to show the robustness of our model. Compared to state-of-the-art approaches, our player detection model achieves the highest accuracy with the self-built dataset.

Keywords: ice hockey; hockey; model; hockey players; detection

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.