Optimization on the basis of sustainability brings important benefits to manufacturing process as sustainable productions constitute a crucial aspect in modern manufacturing. This paper presents a new formalized framework for… Click to show full abstract
Optimization on the basis of sustainability brings important benefits to manufacturing process as sustainable productions constitute a crucial aspect in modern manufacturing. This paper presents a new formalized framework for optimizing the sustainability of manufacturing processes. Unlike previous approaches, the proposed technique combines a methodology for selecting the sustainability indicators and a multi-objective optimization for improving the three sustainability pillars (economy, environment and society). While selecting the significant sustainability indicators in the considered manufacturing process relies on the ABC judgment method, the Saaty’s method enables weighting the chosen indicators in order to combine them into suitable economic, environmental and social sustainability indexes. Other technological aspects, usually taken as objectives in previous works, are considered constraints in the proposed approach. The optimization is performed by using nature inspired heuristics, which return the set of non-dominated solutions (also known as Pareto front), from which the most convenient alternative is chosen by the decision maker, depending on the specific conditions of the process. For illustrating the usage of the proposed framework, it is applied to the optimization of a submerged arc welding process. Compared with currently used welding parameters, the computed optimal solution outperforms the economic and environmental sustainability while keeps equal the social impact. The results show not only the effectiveness of the proposed approach, but also its flexibility by giving a set of possible solutions which can be chosen depending on how are ranked the sustainability pillars.
               
Click one of the above tabs to view related content.