LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cooperative Localization for Multiple Soccer Agents Using Factor Graphs and Sequential Monte Carlo

Photo by acrehuet98 from unsplash

This paper addresses the cooperative localization problem for a multiagent system in the framework of belief propagation. In particular, we consider the RoboCup 3D Soccer Simulation scenario, in which the… Click to show full abstract

This paper addresses the cooperative localization problem for a multiagent system in the framework of belief propagation. In particular, we consider the RoboCup 3D Soccer Simulation scenario, in which the networked agents are able to obtain simulated measurements of the distance and bearing to both known landmarks and teammates as well as the direction of arrival (DOA) of messages received from allies around the field. There are, however, severe communication restrictions between the agents, which limit the size and periodicity of the information that can be exchanged between them. We factorize the joint probability density function of the state of the robots conditioned on all measurements in the network in order to derive the corresponding factor graph representation of the cooperative localization problem. Then we apply the sum-product-algorithm (SPA) and introduce suitable implementations thereof using hybrid Gaussian-Mixture Model (GMM) / Sequential Monte Carlo (SMC) representations of the individual messages that are passed at each network location. Simulated results show that the cooperative estimates for position and orientation converge faster and present smaller errors when compared to the non-cooperative estimates in situations where agents do not observe landmarks for a long period.

Keywords: monte carlo; soccer; factor; sequential monte; cooperative localization; localization

Journal Title: IEEE Access
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.