Terahertz-based nano-networks are emerging as a groundbreaking technology able to play a decisive role in future medical applications owing to their ability to precisely quantify figures, such as the viral… Click to show full abstract
Terahertz-based nano-networks are emerging as a groundbreaking technology able to play a decisive role in future medical applications owing to their ability to precisely quantify figures, such as the viral load in a patient or to predict sepsis shock or heart attacks before they occur. Due to the extremely limited size of the devices composing these nano-networks, the use of the Terahertz (THz) band has emerged as the enabling technology for their communication. However, the characteristics of the THz band, which strictly reduce the communication range inside the human body, together with the energy limitations of nano-nodes make the in-body deployment of nano-nodes a challenging task. To overcome these problems, we propose a novel in-body flow-guided nano-network architecture consisting of three different devices: i) nano-node, ii) nano-router, and iii) bio-sensor. As the performance of this type of nano-network has not been previously explored, a theoretical framework capturing all its particularities is derived to properly model its behavior and evaluate its feasibility in real medical applications. Employing this analytical model, a thorough sensitivity study of its key parameters is accomplished. Finally, we analyze the terahertz flow-guided nano-network design to satisfy the requirements of several medical applications of interest.
               
Click one of the above tabs to view related content.