The Rapid Upper Limb Assessment (RULA) is frequently used to monitor body posture for early risk prevention of work-related musculoskeletal disorders. However, RULA measurements that are based on workers’ self-report… Click to show full abstract
The Rapid Upper Limb Assessment (RULA) is frequently used to monitor body posture for early risk prevention of work-related musculoskeletal disorders. However, RULA measurements that are based on workers’ self-report or external rater observation suffer from low repeatability. Thus, the objective of this study was to investigate the accuracy and repeatability of an inertial measurement unit (IMU) system for in-field RULA score assessment during manual material handling tasks using 3D Cardan angles and 2D projection angles against reference values obtained by a motion-capture camera system. The experimental results showed that for trunk and neck joint angles, the 2D convention had significantly (p < 0.05) smaller root-mean-square error (RMSE), while for other upper-body angles, the convention with significantly smaller RMSE depended on the angle under analysis. Also, the 3D convention showed a “moderate” agreement with the reference system, while the 2D convention showed a “substantial” agreement for two tasks and a “moderate” agreement for one task. Moreover, the intraclass correlation coefficients ranged from 0.82 to 0.94 for the 3D convention and 0.87 to 0.95 for the 2D convention for repeated trials performed by each participant. Therefore, the wearable IMU system, along with the 2D convention, could be considered as an accurate and repeatable ergonomic risk assessment tool.
               
Click one of the above tabs to view related content.